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Abstract

In the previous studies we have looked at a fully developed #ow under the assumption that the granular materials
adhere to the boundary. Whether one uses the continuum approach or the kinetic theory approach in modeling of the
granular materials, slip may occur at the wall, especially when the interstitial #uid is a gas, and therefore the classical
assumption of adherence boundary condition at the wall no longer applies. The steady, fully developed #ow of granular
materials down an inclined plane subject to slip at the wall is studied numerically. This is a non-linear boundary value
problem. The results for the velocity pro"les are presented in terms of appropriate dimensionless numbers. Published by
Elsevier Science Ltd.

Keywords: Granular materials; Slip boundary condition; Continuum approach; Inclined #ow

1. Introduction

Granular materials present one of the most chal-
lenging areas of research in mechanics. Experi-
mental studies in soil mechanics dominated this
"eld for a long time. Until a few decades ago where
theoretical studies based on modern continuum
mechanics started to be used, there were very few
theories, based on the foundation of mechanics. In
the late 1970s, many researches observed the simil-
arities between the #ow (or the behavior) of solid
particles and that of gas molecules. Thus, a whole
new "eld of kinetic theory of granular materials
was initiated. At the same time, with the advances
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in numerical techniques and computation, particle
simulation became feasible and meaningful. Thus,
at the present time, there are a few ways of looking
at the complex behavior of granular materials.
These di!erent ways, i.e., experiment, kinetic the-
ory, particle simulation, continuum theory, etc.,
should not be looked upon as contradictory to each
other; nor should any one of these methods be
taken as the only way, the exclusive way, to under-
stand granular materials. Most of the time, these
methods are complementary to each other, and at
times some may be more appropriate for a given
case, i.e., #ow regime, etc.

In recent years there has been considerable
interest in understanding the behavior of granular
materials because of the relevance that they have to
several technological problems. This includes the
handling of such substances as coal, agricultural
products, fossil-fuel energy, metal ores, crushed oil
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Nomenclature

C
f
, C

g
the sliding coe$cients

D symmetric part of the velocity gradient
e the coe$cient of restitution
f de"ned by Eq. (21)
f H dimensionless slip factor
h boundary thickness
n a unit normal vector
N average value for the volume fraction condition, Eq. (37)
Q average volume fraction, Eq. (30)
R

1
, R

2
dimensionless numbers (Eq. (42))

R
3
, R

21
dimensionless numbers (Eq. (43))

T the Cauchy stress tensor
u the velocity of the particles
u
4

the slip velocity
uH dimensionless velocity
;

0
a reference velocity

uH
s

dimensionless slip velocity
y y-coordinate

Greek letters
a the angle of inclination of the plane
b
0

similar to pressure in a compressible #uid and is given by an equation of state
b
2

akin to the second coe$cient of viscosity in a compressible #uid
b
1
,b

4
the material parameters that re#ect the distribution of the granular materials

b
3

the viscosity of the granular materials,
b
30

a constant
1 a constant to describe slip, Eq. (11)
h the #uctuating energy of the #ow
i de"ned by Eq. (16)
l the volume fraction of the solid
m dimensionless distance
o
4

the actual density of the grains
oH de"ned by Eq. (19)
p the particle diameter
q
8

the wall shear stress
q de"ned by Eq. (15)
s de"ned by Eq. (17)
'

0
de"ned by Eq. (18)

shale, dry chemicals, rocket propellants, fertilizers,
cement, sand and other particulate solids. Further-
more, the process of #uidization of coal particles
and its e!ect on combustion, the mechanics of

avalanches and other natural disaster that involve
the #ow of powders and bulk solids present chal-
lenging problems. In addition, #owing granular
streams are being considered for some advanced
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concepts for solar power plants and fusion reactor
chambers. Many situations, such as discharge
through bin outlets, #ow through hoppers and
chutes, pneumatic transport of coals, #uidized beds,
etc., require information on particle properties,
#ow patterns, concentration pro"les, etc. [1,2].

Since granular materials conform to the shape of
the vessel containing them, they can be considered
#uid-like. However, unlike #uids, they can also be
heaped. Characterizing bulk solids is di$cult main-
ly because small variations in some of the primary
properties such as size, shape, hardness, particle
density, and surface roughness can result in very
di!erent behavior. Furthermore, secondary factors
(such as the presence or the absence of moisture,
and ambient temperature) that are not directly as-
sociated with the particles, but are associated with
the environment can have a signi"cant e!ect on the
behavior of the bulk solids. The concept of `granu-
lar materialsa covers the combined range of granu-
lar powders and granular solids with components
ranging in size from about 10 lm to 3 mm. A pow-
der is composed of particles up to 100lm with
further subdivision into ultra"ne (0.1}1.0lm),
super"ne (1}10lm), or granular (10}100lm) par-
ticles. A granular solid consists of materials ranging
from about 100 to 3000lm [3].

Due to their complexity, modeling granular ma-
terials would require a fusion of ideas from the
mechanics of #uids and solids. For example, granu-
lar materials exhibit phenomena such as yield stress
and normal stress di!erences in simple shear #ow (a
phenomenon usually referred to in the "eld as
dilatancy [4]) characteristic of materials which re-
quire non-linear constitutive modeling. The central
role played by this phenomenon in determining the
characteristics of sand and other granular materials
was recognized early in the development of the
theories for modeling granular materials. Interest-
ingly, a constitutive model that was proposed for
wet sand [5], enjoyed a good bit of popularity as
a model for non-Newtonian #uids before losing its
appeal. Thus, modeling granular materials and
slurries can be very complex and must draw on our
experiences from non-linear #uid and non-linear
solid theories. One approach in the modeling of
granular materials is to treat it as a continuum,
which assumes that the material properties of the

ensemble may be represented by continuous func-
tions so that the medium may be divided in"nitely
without losing any of its de"ning properties. One of
the early continuum models for #owing granular
materials based on the principles of modern con-
tinuum mechanics was proposed by Goodman and
Cowin [6,7]. This work was subsequently modi"ed
and improved upon by other investigators
[1,8}14]. Another approach used in the modeling
of granular materials is based on techniques used in
the kinetic theory. Such an approach is appropriate
for modeling dilute and rapidly #owing granular
materials where collisions dominate. A detailed dis-
cussion of such modeling can be found for example,
in the articles of Jenkins and Savage [15], Lun et al.
[16], Boyle and Massoudi [17]. There are quite
a few excellent review articles which discuss many
of the relevant issues to the #ow of granular mater-
ials. We refer the reader to Savage [2], Hutter and
Rajagopal [18], Mehta [19], and de Gennes [20].

There are several interesting problems which not
only present interesting cases from a mathematical
point of view (such as existence and uniqueness of
the solution, cf. [21]), but also from an applied and
practical point of view. These problems include
gravitational #ows such as #ow in vertical channels
(cf. [6,22,23]), inclined #ows (cf. [10] and many
others), chute #ows [24,25], bins and hoppers (cf.
[26}29,51] among others), etc.

In the present work we study the #ow of granular
materials down an inclined plane. In a previous
study [23], we looked at a fully developed #ow over
a heated inclined plane under the assumption that
the granular materials adhere to the boundary.
This work investigates the problem allowing for the
possibility of slip the surface. This problem, i.e.,
#ow down an inclined plane, has received special
attention due to the simplicity of the equations.
A recent review by Anderson and Jackson [30]
looks at a few of such solutions.

In Section 2, we give a brief outline of the consti-
tutive equation which we have been using in the
previous studies. The details of this formulation are
given in the works of Rajagopal and Massoudi. In
Section 3 which is the main emphasis in this paper,
we provide a basic review of the slip boundary
condition in continuum mechanics, and propose
a slip boundary condition for the present study,
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based on the ideas in classical #uid dynamics and
that of Hutter, speci"cally for granular materials.
In Section 4, we give a summary of the numerical
scheme (the details can be found in Ref. [31]), and
representative pro"les for velocity as a function of
various dimensionless numbers and slip factor are
given.

2. Governing equations

We will now derive equations governing the #ow
of granular materials down an inclined plane. The
basic equations are the conservation of mass

Lo
Lt

# div(ou)"0, (1)

where L/Lt is the partial derivative with respect to
time, and the balance of linear momentum which is

o
du

dt
"div T#ob, (2)

where d/dt is the material time derivative and b is
the body force vector. Since we are interested in the
isothermal #ow with no chemical reactions, etc., the
conservation of energy and the entropy inequality
are not used in this analysis. The Cauchy stress
T for a granular material is given by [1,6,7,52]

T"Mb
0
(l)#b

1
(l)+l '+l#b

2
(l)tr DN1

#b
3
(l)D#b

4
(l)+l?+l. (3)

In the above equations l is the volume fraction of
the solid, D is the symmetric part of the velocity
gradient, b

0
(l) is similar to the pressure in a com-

pressible #uid and is given by an equation of state,
b
2
(l) is similar to the second coe$cient of viscosity

in a compressible #uid, b
1
(l) and b

4
(l) are the

material parameters that re#ect the distribution of
the granular materials, and b

3
(l) is the viscosity of

the granular materials. The above model allows for
normal-stress di!erences, a feature observed in
granular materials. In general, the material proper-
ties b

0
through b

4
are functions of the density (or

volume fraction l), temperature, and the principal
invariants of the appropriate kinematical quantit-
ies. The symmetric part of velocity gradient, D, is

given by

D"1
2
[(+u)#(+u)T], (4)

where u is the velocity of the particles. In Eq. (3), 1 is
the identity tensor, + is the gradient operator, ? in-
dicates the outer (dyadic) product of two vectors,
and tr designates the trace of a tensor. Further-
more, l is related to the bulk density of the material
o through

o"o
4
l, (5)

where o
4

is the actual density of the grains at
position x and time t and the "eld l is called the
volume fraction.

We now consider the #ow of granular materials
modeled by the above continuum model down an
inclined plane due to the action of gravity. This
problem has also been studied by Savage [10],
Hutter et al. [32,33], Johnson and Jackson [34]
and others, under the context of di!erent models.
In this problem, we assume steady one-dimensional
#ow of incompressible granular materials (i.e.,
o
4
"constant). Of course, o

4
being constant does

not imply that o is a constant since l can change.
In the present analysis we assume b

1
, b

2
and

b
4

to be constant and b
0

and the viscosity b
3

to be
of the form [35,36].

b
0
"kl, (6)

b
3
"b

30
(l#l2), (7)

where b
30

is a constant. For a justi"cation of Eqs.
(6) and (7) we refer the reader to Johnson et al.
[35,36]. We should mention that in general b

1
, b

2
,

and b
4

are also functions of l as discussed by
Rajagopal and Massoudi [1]. The numerical simu-
lations of Walton and Braun [37,38] suggest
a quadratic variation in volume fraction. However,
their analysis allows for the viscosity to vary with
the shear rate, a feature that is not present in our
work. Even so, at "xed shear rate, their simulation
suggests a quadratic variation in the volume frac-
tion, which is in keeping with our assumption.

For a fully developed #ow of granular materials
down an inclined plane, the density and the velocity
"elds are assumed to be of the form

l"l(y), u"u(y), (8)
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The conservation of mass is automatically
satis"ed and the balance of linear momentum
reduces to

k
dl
dy

#2(b
1
#b

4
)
dl
dy

d2l
dy2

"o
4
gl cos a, (9)

b
30

(l#l2)
d2u

dy2
#b

30
(1#2l)

dl
dy

du

dy

"!2o
4
gl sin a, (10)

where g denotes the acceleration due to gravity and
a is the angle of inclination of the plane. We need to
solve Eqs. (9) and (10) subject to the appropriate
boundary conditions. We will discuss this in the
next section.

3. Boundary conditions

A simple look at Eqs. (9) and (10) indicates that
to have a well-posed problem, we need two bound-
ary conditions for volume fraction, and two bound-
ary conditions for velocity. This is unlike the fully
developed #ow of a linear incompressible #uid
down an inclined plane where only two boundary
conditions for the velocity are required. In general,
whether we use the kinetic theory approach or the
continuum approach, the need for additional
boundary conditions arises. In the continuum the-
ories of Goodman and Cowin [6,7] (where density
gradient is included), and its modi"cations given by
Ahmadi [11], Passman et al. [39], and Johnson
et al. [35,36], two boundary conditions on the
volume fraction are required. In the numerical solu-
tion of shearing motion of a #uid-solid #ow, Pass-
man et al. [39] prescribed the value of the volume
fraction at the two plates. An alternative way is to
use experimental results, if they are available. Later
Johnson et al. [35,36] considered this issue and
suggested using an integral condition for the vol-
ume fraction.

In the kinetic theory approach, additional
boundary conditions are also necessary for the
value of the #uctuating energy which is related to
what is usually referred to as the granular temper-
ature. There have been many attempts looking at
these issues [32,33,40}44].

The e!ect of boundaries on the #ow of granular
materials has been studied experimentally by Sav-
age and Sayed [44] and Hanes and Inman [45].
The same experiment was performed by the two
groups, except that Savage and Sayed [44]
roughened the walls of their shear cell with sand
paper while Hanes and Inman [45] glued particles
on the wall. Craig et al. [46] have also looked at the
e!ect of boundary conditions.

Whether we use the continuum approach or the
kinetic theory approach, slip may often occur at the
wall, especially when the interstitial #uid is a gas,
and therefore, the classical assumption of adher-
ence boundary condition at the wall no longer
applies. In our approach, we follow a similar pro-
cedure to that of Hutter et al. [32,33] in specifying
the slip at the wall. Lugt and Schot [47] give
a review of slip #ow. While the phenomenon of slip
at the wall occurs more frequently in the #ow of
rare"ed gases and certain polymers, for the major-
ity of #uid #ows, the no-slip boundary condition is
a reasonable one.

Perhaps, the idea of specifying slip at the wall
goes back to Navier [48] who introduced a con-
stant 1 to describe slip at the wall

1u
4
"k

du

dn
, (11)

where u
4
is the slip velocity, k is the #uid viscosity,

u is the #uid velocity, and n is the normal of the wall
directed into the #uid. Of course, there has been
evidence for many years that for #ows of some
non-Newtonian #uids slip occurs at the wall. In
fact, it is possible that the boundary condition is
more complex in that the material &stick-slips' on
the boundary. If the shear stress is below a certain
value, the material adheres to the boundary while it
slips above a critical value of the shear stress. Such
a phenomenon has been observed in polymeric
materials and is the source of many surface instabil-
ities observed in polymeric extrudates. An early
attempt to generalize condition (11) for non-New-
tonian #uids was made by Pearson and Petrie [49]
in the form

u
4
"f (q

8
)q

8
, (12)
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where q
8

is the wall shear stress. Hutter et al.
[32,33] and Szidarovszky et al. [50] in their studies
of granular materials used a similar relationship to
relate the slip velocity, u

4
, and the #uctuating en-

ergy of the #ow, h, of avalanches on an inclined
plane. Speci"cally, they used

u
4
"f (q2)q, (13)

h"g(u2)u2 (14)

at y"0, where

q"2si(2#a)/5 (15)

with

i"
1

2

du

dy
, (16)

s"2oHp(1#e)'
0
(h/n)1@2, (17)

'
0
"l2g

0
"

l2(2!l)
2(1!l)3

, (18)

o"loH, (19)

g
0
"

1

1!l
#

3l
2(1!l)2

#

l2
2(1!l)3

, (20)

where p is the particle diameter, e is the coe$cient
of restitution, and f and g depend on the surface
roughness. Hutter et al. [32,33] suggested the fol-
lowing forms for f and g:

f (s2)"C
f
(s2)(n~1)@2, (21)

g(s2)"C
g
(s2)(m~1)@2, (22)

with sliding coe$cient C
f

and C
g

and power-law
exponents n and m. The case C

f
P0 corresponds to

the classical no-slip boundary condition.
Szidarovszky et al. [50] provide an alternative
boundary condition for (14) in the form of

ah#s
dh
dy

"0 (23)

which indicates that the gradient of the #uctuating
energy at the wall is proportional to the #uctuating
energy.

We will take a similar approach in that we as-
sume that the slip velocity is proportional to the
stress vector at the wall. That is

u
4
"f[(Tn)

x
, (Tn)

y
], (24)

where T is the stress tensor, n is a unit normal
vector and f in general could be a function of
surface roughness, volume fraction, shear rate, etc.
With the constitutive equation (3), Eq. (24) becomes

u
4
"f Cb0

sin a#b
1

sin aA
dl

0
dy B

2
#

b
3
2

cos a
du

dyD,
(25)

where b
1

is assumed to be constant, as mentioned
before, and b

0
and b

3
are given by Eqs. (6) and (7).

We need to solve Eqs. (9) and (10) subject to the
appropriate boundary conditions. These boundary
conditions for the velocity are:

at y"0 (on inclined plane),

u"0 (no-slip case) (26)

or

u"u
4

(slip case), (27)

where

u
4
"f Ckl sin a#b

1
sin aA

dl
0

dy B
2

#

b
30
2

(l#l2)cos a
du

dyD. (28)

The boundary conditions for the velocity and vol-
ume fraction at the free surface (y"h) are

kl#(b
1
#b

4
)A

dl
dyB

2
"0,

du

dy
"0. (29)

We still need one more condition for the volume
fraction. One method is to use the following condi-
tion:

Q"P
h

0

ldy. (30)
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Note that we could, in theory, specify a value for
l at y"0 by either gluing particles to the wall, or
by simply assuming a particle distribution at the
wall. However, the condition given by Eq. (30),
though strictly speaking is not a boundary condi-
tion, it nevertheless is a physical and reasonable
condition to specify: it simply indicates an average
value of the amount of particles in the system.

Also, notice that Eq. (29) is the stress-free condi-
tion. Johnson et al. [35,36] used Eq. (30) as an
additional condition necessary for the speci"cation
of l. Furthermore, Rajagopal and Massoudi [1]
and Rajagopal et al. [21] have shown that

k(0 (31)

as compression should lead to densi"cation of the
materials. In general, the second law of thermo-
dynamics would also place restrictions on the na-
ture of the material parameters; we will not discuss
this issue here.

Now, the system of Eqs. (9) and (10) subject to the
boundary conditions (26)}(30) are non-dimen-
sionalized by

m"
y

h
, uH"

u

;
0

, (32)

where h is a characteristic length and ;
0

is a refer-
ence velocity. The above system of equations reduc-
es to

R
1

dl
dm

#R
2

dl
dm

d2l
dm2

"l cos a, (33)

R
3
l(1#l)

d2uH
dm2

#R
3
(1#2l)

dl
dm

duH
dm

"!l sin a. (34)

Eqs. (33) and (34) are subject to the following
boundary conditions, in their dimensionless forms:

at m"1 (at the free surface)

duH
dm

"0, (35)

R
1
l#

R
2

2 A
dl
dmB

2
"0. (36)

The condition for the volume fraction l is

N"P
1

0

ldm. (37)

Integrating Eq. (33) from m"0 to 1, and using
the boundary condition given by Eq. (36) and the
volume fraction condition given by Eq. (37), the
condition for the volume fraction at the surface is
given by

CR1
l#

R
2

2 A
dl
dmB

2

Dm/0

"!N cos a. (38)

The dimensionless form of the boundary condi-
tion for velocity at m"0 (on inclined plane) is

uH"0 (no-slip case), (39)

uH"uH
4

(slip case), (40)

where

uH
4
"f H CR1

l sin a#R
21

sin aA
dl

0
dm B

2

#R
3
(l#l2)cos a

duH
dm D. (41)

Now, f H"hf/; and the non-dimensional para-
meters, R

1
, R

2
, R

3
, and R

21
are given by

R
1
"

k

ho
4
g
, R

2
"

2(b
1
#b

4
)

h3o
4
g

, (42)

R
3
"

b
30
;

0
2h2o

4
g
, R

21
"

b
1

h3o
4
g
. (43)

These dimensionless parameters have the
following physical interpretations: parameter
R

1
could be thought of as the ratio of the

pressure force to the gravity force, R
2

is the ratio
of the force due to volume fraction distribution to
the gravity force, R

3
is the ratio of the viscous force

to the gravity force (related to the Reynolds num-
ber). Since k is less than zero, R

1
can only have

negative values, and since b
3

is positive, R
3

is only
given positive values. R

21
has a similar meaning

to R
2
.
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Fig. 1. E!ects of the slip factor on the velocity and the velocity gradient (R
1
"!1.0, R

2
"10, R

3
"0.01, R

21
"10, a"30).

4. Numerical calculations

Eqs. (33) and (34) subject to boundary conditions
(35)}(41) are solved numerically to obtain the di-
mensionless velocity pro"les, the surface velocities,
the free stream velocities, and the velocity gradients
at the surface using R

1
, R

2
, R

3
, R

21
, and f H as

parameters while N, and a are kept constant at 0.3
and 303, respectively. To do so, Eqs. (33) and (34)
are discretized using central-di!erence approxima-
tion. Since the conditions duH/dm, and dl/dm at
m"0 are not known, the numerical procedure re-
quires that these unknowns must be initially
guessed so that the calculation can proceed
throughout the domain (from m"0 to 1). The solu-
tions of l and uH at m"1, provided by the initial
guesses, are compared with the known values of
l and uH at m"1, represented by Eqs. (35) and (36),
respectively. If the solutions at this point are such
that Eqs. (35) and (36) are not satis"ed, another
guess must be used and the calculation is repeated.
This procedure is continued until the solutions of
l and uH at m"1 provided by the initial guesses
satisfy conditions (35) and (36). In order to reduce
the guess work, the Newton}Raphson method is
used for correcting the initial guesses. These pro-
cedures are described in detail by Phuoc and Mas-
soudi [31].

5. Results and discussion

The solutions for the velocity pro"le, velocity
gradient, surface velocity and the free stream velo-
city are presented for di!erent values of the physical
parameters R

1
}R

3
and the slip factor. The e!ect of

the slip factor is investigated using f H as a variable
while R

1
, R

2
, R

3
, R

21
, are kept constants. Typical

results for this case are shown in Figs. 1 and 2.
Fig. 1A shows a linear shift of the velocity pro"les
corresponding to four values of f H"0, 40, 80, and
120. Such a linear shift is seen clearly using in-
formation from Fig. 2A where the surface velocity
and the free stream velocity are plotted against the
slip factor showing that both the surface velocity
and the free stream velocity increase linearly as the
slip factor increases. The shape of these pro"les,
however, are the same for all four values of the
slip factor. This can be seen in Figs. 1B and 2B
where the velocity gradient for the entire #ow and
the velocity gradient at the surface of the inclined
plane are seen to be independent of the slip factor.
Thus, the results reported here show that increasing
the slip factor does not alter the #ow pattern. The
only e!ect seems to be a speeding up of the #ow
leading to a linear increase in the #ow velocity.
A similar phenomenon was observed by Hutter
et al. [33].
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Fig. 2. Surface and free stream velocities and velocity gradient at the surface versus the slip factor: e!ects of R
3

(R
1
"!1.0,

R
2
"10, R

21
"10, a"30).

Fig. 3. Dimensionless velocity at surface and free stream and velocity gradient at the surface versus R
3

(R
1
"!1.0,

R
2
"10, R

21
"10, a"30, f H"100).

The e!ect of the parameter R
3

on the velocity at
the surface and at the free surface, and the velocity
gradient at the surface are shown in Figs. 3 and 4.
As R

3
increases from 0.01 to 0.1, the surface

velocity remains constant. On the other hand,
the free stream velocity and the velocity gradient

at the surface decrease drastically and become
independent of R

3
when its value is higher than

0.09. Under this condition, the free stream velocity
approaches the surface velocity #attening the velo-
city pro"le for the entire #ow domain as shown in
Fig. 4. Since R

3
is de"ned as the ratio of the
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Fig. 4. E!ects of the slip factor f H and R
3

on the dimensionless velocity pro"les (R
1
"!1.0, R

2
"10, R

21
"10, a"30).

Fig. 5. E!ects of the slip factor f H and R
1

on the dimensionless velocity pro"les (R
3
"0.01, R

2
"10, R

21
"10, a"30).

viscous force to the gravity force, this result
indicates that, the e!ect of viscous force on the
#ow is very di!erent from that due to gravity force.
The viscous force tends to retard the free stream
#ow. Therefore, when the #ow is under viscous
control, the free stream velocity is close to the

surface velocity and the velocity pro"le becomes
#at. The gravity force, on the other hand,
tends to increase the free stream velocity, therefore,
if the #ow is under gravity-control the free stream
velocity is very much higher than the surface
velocity.
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Fig. 6. Surface and free stream velocities and velocity gradient at the surface versus the slip factor: e!ects of R
1

(R
3
"0.01,

R
2
"10, R

21
"10, a"30).

Fig. 7. Dimensionless velocity at surface and free stream and velocity gradient at the surface versus R
1

(R
3
"0.01,

R
2
"10, R

21
"10, a"30, f H"100).

Since the velocity pro"les of the #ow "eld are
determined by the velocity at the surface, it is clear
from Eq. (41) that, when the slip factor f H is equal to
zero, R

1
has an insigni"cant e!ect on the #ow "eld.

When f H'0, however, the e!ect of R
1

becomes
more signi"cant. These results are shown in Figs.

5}7. Data in these "gures are obtained with two
values of R

1
(R

1
"!1 and !4), while other para-

meters were kept constant. Fig. 5 shows the
slip/no-slip dimensionless velocity pro"les. Fig. 6
shows the surface and free stream dimensionless
velocity as a function of the slip factor, while in
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Fig. 8. E!ects of the slip factor f H and R
2

on the dimensionless velocity pro"les (R
3
"0.01, R

1
"!1.0, R

21
"20, a"30).

Fig. 9. Surface and free stream velocities and velocity gradient at the surface versus the slip factor: e!ects of R
2

(R
3
"0.01, R

1
"!1.0,

R
21

"20, a"30).

Fig. 7 we present the variation of these velocities
with respect to R

1
. The results indicate that, when

f H"0, the velocity pro"le obtained for R
1
"!1

is very close to that obtained for R
1
"!4. How-

ever, when f H'0, these pro"les are far apart from
each other. Fig. 7 shows that when the absolute

value of R
1

is increased the velocity gradient at the
surface decreases and the surface as well as the free
stream dimensionless velocities increase drastically.

Since R
2

is a measure of the volume distribution
force to the gravity force, we can observe the e!ect
of the volume distribution force on the #ow "eld by
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Fig. 10. Dimensionless velocity at surface and free stream and velocity gradient at the surface versus R
2

(R
3
"0.1, R

1
"!1.0,

R
21

"20, a"30, f H"100).

Fig. 11. Surface and free stream velocities and velocity gradient at the surface versus the slip factor: e!ects of R
21

(R
3
"0.01, R

1
"

!1.0, R
2
"10, a"30).

changing R
2

while keeping other parameters
constant. Some typical results are presented in
Figs. 8}10. Similar to R

1
, the e!ect of parameter R

2
is observed to be signi"cant only when the slip
factor f H'0. As seen from Fig. 10, while R

2
has

a strong e!ect on the surface and free stream di-

mensionless velocities, it has only a minor e!ect on
the velocity gradient at the surface. For example,
when R

2
increases from 5 to 30 the surface and free

stream dimensionless velocities decrease from
about 35 to less than 5 while the velocity gradient
at the surface slightly increases from about 2.6 to
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Fig. 12. E!ects of the slip factor f H and R
21

on the dimensionless velocity pro"les (R
3
"0.01, R

1
"!1.0, R

2
"10, a"30).

Fig. 13. Dimensionless velocity at surface and free stream and velocity gradient at the surface versus R
21

(R
3
"0.01, R

1
"

!1.0, R
2
"20, a"30, f H"100).

3.5 (see Fig. 10). Since the shape of the velocity
pro"le depends on the velocity gradient at the
surface, such a small increase in the velocity
gradient at the surface does not have a signi"cant
e!ect on the shape of the velocity pro"le as shown
in Fig. 8. Thus, it can be said that the volume

distribution force signi"cantly a!ects the #ow
"eld when the slip factor f H'0. In this case, an
increase in the volume distribution force leads to
a signi"cant decrease in the #ow "eld velocity
but the shape of the velocity pro"le remains
unchanged.
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Figs. 11}13 show the e!ects of the parameter
R

21
on the #ow properties. Since R

21
has the same

physical meaning as R
2
, the e!ect of R

21
on these

#ow properties should be similar to that of R
2
. In

Fig. 12, when f H"0, the velocity pro"les remain
unchanged for R

21
varying from 10 to 50. For

f H"120, although the shape of the velocity pro"le
remains undisturbed, an increase in R

21
leads to

a linear shift in the velocity pro"les. The increase in
the magnitude of the surface and free stream dimen-
sionless velocities and the velocity gradient at the
surface as a function of R

21
is presented in Fig. 13.

It is clear that, when R
21

is increased from 10 to 50
the velocity gradient at the surface remains con-
stant while both the surface and free stream vel-
ocities increase linearly.

6. Conclusions

The dense #ow of granular materials down an
inclined plane, using the constitutive relation used
by Rajagopal and Massoudi subject to slip at the
wall is studied. The #ow is assumed to be steady
and fully developed, and as a result, phenomenon
such as &hydraulic jump' observed by Brennen and
co-workers and Jackson and co-workers is not al-
lowed in the present case. Due to the kinematical
constraints, the equation for the volume fraction
can be solved independent of the momentum equa-
tion. As a result, the slip boundary condition only
a!ects the velocity pro"les. At the free surface, the
stress-free condition is imposed. The parametric
study, while varying the dimensionless numbers,
indicates that when the slip factor is zero, we re-
cover the results obtained by Gudhe et al. [23], and
when the slip factor is not zero, a range of interest-
ing phenomenon is observed for di!erent values of
the dimensionless numbers.

We need to mention here that even though we
have referred to the works of Hutter et al. [32,33]
extensively, we are not able to compare the results
of our investigation with theirs in a quantitative
manner. The main reason is that though Hutter et
al. have studied the same problem with similar slip
boundary condition at the wall, since they have
taken a kinetic theory approach, they have addi-
tional parameters such as the granular temper-

ature, which is really a measure of the #uctuation of
the particles, and not a real temperature measured
by a thermometer. As a result, they also have an
additional governing equation which resembles the
heat transfer equation. Having said that, we do
observe, in a qualitative way, similar velocity pro-
"les to those of Hutter et al.

Finally, a look at Eq. (9) or (33) would reveal that
the volume fraction distribution, i.e., the density
"eld, for this particular #ow is independent of the
velocity "eld. As a result, the imposition of the slip
boundary condition has no e!ect on the volume
fraction distribution. This is purely due to (i) the
kinematical assumption given by Eq. (8), and (ii) the
fact that we have ignored the e!ect of the interstitial
#uid. That is, if we now consider the #ow of
a granular material modeled by Eq. (3) in a chute,
the #ow "eld is at least two-dimensional, and in this
case the velocity distribution will have an e!ect on
l. In the second case, where we have to use the
Mixture Theory (or take a multi-component ap-
proach), even for a one-dimensional fully developed
#ow"eld of the type given in Eq. (8), due to the
interactive forces such as lift, or pressure of the
#uid, there would be lateral movement of the par-
ticles, and as a result a change in the boundary
condition for the #ow at the solid surface will have
an e!ect on the volume fraction.
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